

Page 1 of 19

Faculty of Computers and Artificial Intelligence

 Embedded Systems

Lab no 06: Hand Gesture Recognition Prototype

Bluetooth and Interface with Accelerometer and led Matrix Display

The purpose of this Lab is to learn interfaces with Bluetooth
module, accelerometer, and LED matrix display. To do that, we
are going to design an Arduino Hand Gesture Recognition project
using an accelerometer sensor for movement recognition.

Parts: -

1. Concepts of Hand Gesture Recognition.

2. Understanding the Circuit and its Components

a) Accelerometer Sensor.

b) LED Matrix Display.

c) Bluetooth Module.

 3. Hand Gesture Recognition Code.

Page 2 of 19

Faculty of Computers and Artificial Intelligence

 Embedded Systems

Part 1. Concepts of Hand Gesture Recognition

Hand gesture recognition (HGR) is a natural way of Human-
Machine Interaction and has been applied in different areas. In
this lab, the prototype of hand gesture recognition is divided into
two sets:

Set 1: detects the movement of the hand as shown in the figure
below (Up, Down, Right, Left) using an accelerometer. Then it
sends the movement notation to Set 2 through Bluetooth.

Set 2: receives the movements notation through Bluetooth and
draws (up, down, right, left) arrow on LED matrix display, as
shown in the figure below.

Page 3 of 19

Faculty of Computers and Artificial Intelligence

 Embedded Systems

Part 2. Understanding the circuit and its components

Part 2. a) Accelerometer Sensor

The MMA7361 is a 3-axis accelerometer with a ± 1.5g to ± 6g
measuring range. You do not need a library and complex code to
use the MMA7361 accelerometer.

In this module, there is an analog output voltage for each axis
acceleration. As a result, you can read and analyze the sensor’s
outputs using an analog-to-digital converter.

➢ Accelerometer Sensor Pinout

10 Pinouts as follows:

1. 5V: Module power supply 5 V

2. 3V3: Module power supply: 3.3V

3. GND: Ground

4. GS: Specifies the module working mode. If “0”, the range is ± 1.5g,

and if “1”, the range is ±6g.

5. ST: To test the module automatically

6. X: X-axis acceleration output

7. Y: Y-axis acceleration output

8. Z: Z-axis acceleration output

9. SL: Sleep

10. 0G: Detects zero acceleration on all axes. This pin is used to detect

free fall.

Page 4 of 19

Faculty of Computers and Artificial Intelligence

 Embedded Systems

➢ Accelerometer Circuit: -

The following circuit shows how to connect Arduino to the
MMA7361 module. Connect wires accordingly.

➢ Accelerometer Code: -

Upload the following code to Arduino. This code displays the
sensor readings in the serial monitor.

int x = 0;

int y = 0;

int z = 0;

void setup()

{

 Serial.begin(9600);

}

void loop()

{

 x = analogRead(A0);

 y = analogRead(A1);

 z = analogRead(A2);

 Serial.print("X = ");

 Serial.print(x);

 Serial.print(" X_Voltage = ");

 Serial.println(x*5.0/1024.0);

Page 5 of 19

Faculty of Computers and Artificial Intelligence

 Embedded Systems

 Serial.print("Y = ");

 Serial.print(y);

 Serial.print(" Y_Voltage = ");

 Serial.println(float(y)*5.0/1024.0);

 Serial.print("Z = ");

 Serial.print(z);

 Serial.print(" Z_Voltage = ");

 Serial.println(float(z)*5.0/1024.0);

 Serial.println("*******************");

 delay(1000);

}

After running the code, you will see the following image in the
serial output

Page 6 of 19

Faculty of Computers and Artificial Intelligence

 Embedded Systems

Part 2. b) LED Matrix Display

The LED matrix is an array of multiple

LEDs arranged in a row by column

order. Arrangement of the LEDs in the

matrix pattern is made in either of the

two ways:

row anode – column cathode or

row cathode – column anode.

The matrix pattern minimizes the

number of pins required to drive them.

In this sample in the figure above, 35 LEDs are controlled using
a combination of 12 pins. Desired character or graphics can be
displayed by switching ON/OFF a desired configuration of LEDs,
the perfection depends on the number of LEDs on the dot matrix.
To light up an LED make the corresponding cathode low and
anode high. The quick scanning of rows and columns makes the
data visible to our eyes, i.e. persistence of vision.

Page 7 of 19

Faculty of Computers and Artificial Intelligence

 Embedded Systems

➢ LED Matrix Display Hardware Connection: -

A minimum of 12 pins are required to wire up the dot matrix
display with an Arduino board, rows use 7 pins while columns
need 5 pins. The rows are driven by pin1 through pin7 and the
columns are driven by pin8 through pin12 of Arduino, as
illustrated below.

Rows: R0 → 1, R1→2, R2→ 3, R3 → 4, R4 → 5, R5→ 6, R6→ 7

Columns: C0 → 8, C1→9, C2→ 10, C3→11, C4 → 12

➢ LED Matrix Display Example Code:

// mBuf - 2 dimensional array (7 rows, 5 columns)

 byte mBuf[7][5] = {

 {0, 0, 0, 0, 0}, // 0

 {0, 1, 0, 1, 0}, // 1

 {0, 0, 0, 0, 0}, // 2

 {0, 0, 1, 0, 0}, // 3

 {1, 0, 0, 0, 1}, // 4

 {0, 1, 1, 1, 0}, // 5

 {0, 0, 0, 0, 0} // 6 };

// array that holds row pin assignments

Page 8 of 19

Faculty of Computers and Artificial Intelligence

 Embedded Systems

int rowPins[7] = {7, 8, 9, 10, 11, 12, 13};

// array that holds column pin assignments

int colPins[5] = {2, 3, 4, 5, 6};

// Set the row pins to mbuff column values

void setRowPins(int c)

 {

 int r;

 for (r = 0; r < 7; r++)

 { digitalWrite(rowPins[r], mBuf[r][c]);}

 return;

}

// send the contents of mbuff to the matrix display

void refreshMatrix()

{

 for (int c = 0; c < 5; c++)

 {

 setRowPins(c);

 digitalWrite(colPins[c], HIGH);

 delay(2);

 digitalWrite(colPins[c], LOW);

 }

 return;

}

void setup() {

// put your setup code here, to run once:

for (int c = 0; c < 5; c++)

 {

 pinMode(colPins[c], OUTPUT); // initalize column pins

 }

for (int r = 0; r < 7; r++)

// initialize row pins

 { pinMode(rowPins[r], OUTPUT); }

}

void loop() {

 // put your main code here, to run repeatedly:

 refreshMatrix(); // updates the Led dot matrix display

}

Page 9 of 19

Faculty of Computers and Artificial Intelligence

 Embedded Systems

Part 2. c) Bluetooth Module

HC-05 Bluetooth Modules are the go-to Bluetooth modules for
any Arduino project! It’s easy to hook up and code in the Arduino
IDE. In most projects, we usually connect HC05 to an Arduino
and use it to wirelessly communicate with another smart device
like a mobile phone. This is fairly simple and we have built many
interesting projects with it like Bluetooth Controlled
Robot, Bluetooth Voice Control, Bluetooth Home Automation,
etc.

HC-05 Bluetooth Module Features are as follows:

➢ HC-05 Bluetooth module offers two ways of communication
for shorter distances with fast speed.

➢ It has an enable pin which allows toggling between command
and data mode.

➢ The device uses UART (serial communication) which is easy
to interface with any microcontroller or system.

➢ Its range is up to 8 – 10 meters but it signals lower down with
any obstacle in its way.

https://circuitdigest.com/tags/bluetooth
https://circuitdigest.com/microcontroller-projects/arduino-bluetooth-biped-bob-robot
https://circuitdigest.com/microcontroller-projects/arduino-bluetooth-biped-bob-robot
https://circuitdigest.com/microcontroller-projects/arduino-based-voice-controlled-leds
https://circuitdigest.com/microcontroller-projects/smart-phone-controlled-arduino-home-automation

Page 10 of 19

Faculty of Computers and Artificial Intelligence

 Embedded Systems

➢ Bluetooth Module Pinout

VCC Pin

GND Pin

TX Pin The HC-05 Bluetooth
module interface with the
microcontroller through UART
communication. The TX is the
data transfer pin of the module in
UART.

RX Pin This pin is the data receiving the pin in UART communication.

State Pin The state will be to show the current state of the Bluetooth. It
gives feedback to the controller about the connectivity of Bluetooth with
another device.

Enable/Key Pin Enable/Key pin helps to change the device between data
mode and command mode using an external signal. The HIGH logic state will
transfer the device in command mode and the LOW logic state will transfer
in data mode. The default device state without any signal will be data mode.

Button Pin The command and data mode states are changeable through a
button present on the module.

LED Pin LED will help to visualize the different states of the HC-05 Module.

Page 11 of 19

Faculty of Computers and Artificial Intelligence

 Embedded Systems

Reference: How To Configure and Pair Two HC-05 Bluetooth Modules as Master and Slave |

AT Commands - How To Mechatronics

➢ Connecting two HC-05s

Connecting two HC-05s together is not as straightforward as
connecting an HC05 to a smartphone, there are some additional
steps involved:
1. Connect the “Enable” pin of the Bluetooth module to 5 volts
2. Connect the RX pin of the Arduino to the RX pin of the

Bluetooth module, through the voltage divider, as shown in
the figure above, and the TX pin of the Arduino to the TX pin
of the Bluetooth module.

3. Hold the small button over the “Enable” pin when powering the
module on to enter the command mode. If the Bluetooth
module led is flashing every 2 seconds that means that we
have successfully entered in the AT command mode.

4. Upload an empty sketch to the Arduino but don’t forget to
disconnect the RX and TX lines while uploading.

5. Run the Serial Monitor and there select “Both NL and CR”, as

well as “38400 baud” rate which is the default baud rate of the
Bluetooth module. Now we are ready to send commands and
their format is as follows.

https://howtomechatronics.com/tutorials/arduino/how-to-configure-pair-two-hc-05-bluetooth-module-master-slave-commands/
https://howtomechatronics.com/tutorials/arduino/how-to-configure-pair-two-hc-05-bluetooth-module-master-slave-commands/

Page 12 of 19

Faculty of Computers and Artificial Intelligence

 Embedded Systems

All commands start with “AT”, followed by the “+” sign, then a
<Parameter Name> and they end either with the “?” sign which
returns the current value of the parameter or the “=” sign when
we want to enter a new value for that parameter.

Slave Configuration

So for example, if we type just “AT” which is a test command we
should get back the message “OK”. Then if we type “AT+UART?”
we should get back the message that shows the default baud
rate which is 38400. Then if we type “AT+ROLE?” we will get
back a message “+ROLE=0” which means that the Bluetooth
device is in slave mode. If we type “AT+ADDR?” we will get back
the address of the Bluetooth module and it should look something
like this: 98d3:34:905d3f.

Now we need to write down this address as we will need it when
configuring the master device. Actually that’s all we need when
configuring the slave device, to get its address, although we can
change many different parameters like its name, baud rate,
pairing password, and so on, but we won’t do that for this
example.

Page 13 of 19

Faculty of Computers and Artificial Intelligence

 Embedded Systems

Master Configuration

let’s move on and configure the other Bluetooth module as a
master device. First, we will check the baud rate to make sure it’s
the same 38400 as the slave device. Then by typing
“AT+ROLE=1” we will set the Bluetooth module as a master
device. After this using the “AT+CMODE=0” we will set the
connect mode to “fixed address” and using the “AT+BIND=”
command we will set the address of the slave device that we
previously wrote down.

Note here that when writing the address we need to use commas
instead of colons. Also note that we could have skipped the
previous step if we entered “1” instead of “0” at the “AT+CMODE”
command, which makes the master to connect to any device in
its transmission range but that’s a less secure configuration.

Nevertheless, that’s all we need for a basic configuration of the
Bluetooth modules to work as master and slave devices and now
if we reconnect them in normal, data mode, and re-power the
modules, in a matter of seconds the master will connect to the
slave. Both modules will start flashing every 2 seconds indicating
a successful connection.

Page 14 of 19

Faculty of Computers and Artificial Intelligence

 Embedded Systems

The connection between the Master and slave is as shown below

Page 15 of 19

Faculty of Computers and Artificial Intelligence

 Embedded Systems

➢ Bluetooth Module Code Example: -

Receiver:

#include <SoftwareSerial.h>

#define tx 2

#define rx 3

SoftwareSerial bt(rx, tx); //RX, TX

void setup()

{

 Serial.begin(9600);

 bt.begin(9600);

 pinMode(tx, OUTPUT);

 pinMode(rx, INPUT);

}

void loop()

{

 if(bt.available()>0)

 {

 Serial.println(bt.read());

 }

}

Sender:

#include <SoftwareSerial.h>

#define tx 2

#define rx 3

SoftwareSerial bt(rx,tx); //RX, TX

void setup()

{

 Serial.begin(9600);

 bt.begin(9600);

 pinMode(tx, OUTPUT);

 pinMode(rx, INPUT);

}

void loop()

{

 bt.write(123);

}

Page 16 of 19

Faculty of Computers and Artificial Intelligence

 Embedded Systems

Part 3. Hand Gesture Recognition Code.

Receiver:

#include <SoftwareSerial.h>

#define tx 2

#define rx 3

int direction = 0;

 byte right[7][5] = {

 {1, 1, 1, 1, 1}, // 0

 {1, 1, 0, 1, 1}, // 1

 {1, 1, 1, 0, 1}, // 2

 {0, 0, 0, 0, 0}, // 3

 {1, 1, 1, 0, 1}, // 4

 {1, 1, 0, 1, 1}, // 5

 {1, 1, 1, 1, 1} // 6 };

 byte up[7][5] = {

 {1, 1, 0, 1, 1}, // 0

 {1, 0, 0, 0, 1}, // 1

 {0, 1, 0, 1, 0}, // 2

 {1, 1, 0, 1, 1}, // 3

 {1, 1, 0, 1, 1}, // 4

 {1, 1, 0, 1, 1}, // 5

 {1, 1, 0, 1, 1} // 6 };

 byte down[7][5] = {

 {1, 1, 0, 1, 1}, // 0

 {1, 1, 0, 1, 1}, // 1

 {1, 1, 0, 1, 1}, // 2

 {1, 1, 0, 1, 1}, // 3

 {0, 1, 0, 1, 0}, // 4

 {1, 0, 0, 0, 1}, // 5

 {1, 1, 0, 1, 1} // 6 };

 byte left[7][5] = {

 {1, 1, 1, 1, 1}, // 0

 {1, 1, 1, 1, 1}, // 1

 {1, 0, 1, 1, 1}, // 2

 {0, 0, 0, 0, 0}, // 3

 {1, 0, 1, 1, 1}, // 4

 {1, 1, 1, 1, 1}, // 5

 {1, 1, 1, 1, 1} // 6 };

Page 17 of 19

Faculty of Computers and Artificial Intelligence

 Embedded Systems

// array that holds row pin assignments

int rowPins[7] = {1, 2, 3, 4, 5, 6, 7};

// array that holds column pin assignments

int colPins[5] = {8, 9, 10, 11, 12};

SoftwareSerial bt(rx, tx); //RX, TX

void setup()

{

 Serial.begin(9600);

 bt.begin(9600);

 pinMode(tx, OUTPUT);

 pinMode(rx, INPUT);

 for (int c = 0; c < 5; c++)

 { pinMode(colPins[c], OUTPUT); // initalize column pins }

for (int r = 0; r < 7; r++)

// initialize row pins

 { pinMode(rowPins[r], OUTPUT);}

}

void setRowPins(int c)

 {

 int r;

 if(direction ==1)

 {

 for (r = 0; r < 7; r++)

 {

 digitalWrite(rowPins[r], left[r][c]);

 }

 }

 else if(direction ==2)

 {

 for (r = 0; r < 7; r++)

 {

 digitalWrite(rowPins[r], up[r][c]);

 }

 }

 else if(direction ==3)

 {

 for (r = 0; r < 7; r++)

 {

Page 18 of 19

Faculty of Computers and Artificial Intelligence

 Embedded Systems

 digitalWrite(rowPins[r], down[r][c]);

 }

 }

 else if(direction ==4)

 {

 for (r = 0; r < 7; r++)

 {

 digitalWrite(rowPins[r], right[r][c]);

 }

 }

 return;

}

void refreshMatrix()

{

 for (int c = 0; c < 5; c++)

 {

 setRowPins(c);

 digitalWrite(colPins[c], HIGH);

 delay(2);

 digitalWrite(colPins[c], LOW);

 }

 return;

}

void loop()

{

 if(bt.available()>0)

 {

 Direction= bt.read();

 Serial.println(bt.read());

 }

 refreshMatrix(); // updates the Led dot matrix display

}

Page 19 of 19

Faculty of Computers and Artificial Intelligence

 Embedded Systems

Sender:

#include <SoftwareSerial.h>

#define tx 2

#define rx 3

SoftwareSerial bt(rx,tx); //RX, TX

int x = 0;

int y = 0;

int z = 0;

void setup()

{

 Serial.begin(9600);

 bt.begin(9600);

 pinMode(tx, OUTPUT);

 pinMode(rx, INPUT);

}

void loop()

{

 x = analogRead(A0)/256;

 y = analogRead(A1)/256;

 z = analogRead(A2)/256;

 if(x ==1 && y==0 &&z==1)

 { for (r = 0; r < 7; r++)

 { bt.write(1); }

 }

 else if(x ==0 && y==1&&z==1)

 { for (r = 0; r < 7; r++)

 { bt.write(2);}

 }

 else if(x ==1 && y==1&&z==0)

 { for (r = 0; r < 7; r++)

 { bt.write(3); }

 }

 else if(x ==1 && y==2&&z==0)

 { for (r = 0; r < 7; r++)

 { bt.write(4); }

 }

}

